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Abstract. We consider the comparison of multigrid methods for parabolic partial differential
equations that allow space-time concurrency. With current trends in computer architectures leading
towards systems with more, but not faster, processors, space-time concurrency is crucial for speeding
up time-integration simulations. In contrast, traditional time-integration techniques impose serious
limitations on parallel performance due to the sequential nature of the time-stepping approach, al-
lowing spatial concurrency only. This paper considers the three basic options of multigrid algorithms
on space-time grids that allow parallelism in space and time: coarsening in space and time, semi-
coarsening in the spatial dimensions, and semicoarsening in the temporal dimension. We discuss
advantages and disadvantages of the different approaches and their benefit compared to traditional
space-parallel algorithms with sequential time stepping on modern architectures.
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1. Introduction. The numerical solution of linear systems arising from the dis-
cretization of partial differential equations (PDEs) with evolutionary behavior, such as
parabolic (space-time) problems, hyperbolic problems, and equations with time-like
variables is of interest in many applications including fluid flow, magnetohydrody-
namics, compressible flow, and charged particle transport. Current trends in super-
computing leading towards computers with more, but not faster, processors induce
a change in the development of algorithms for these type of problems. Instead of
exploiting increasing clock speeds, faster time-to-solution must come from increasing
concurrency, driving the development of time-parallel and full space-time methods.

In contrast to classical time-integration techniques based on a time-stepping ap-
proach, i.e., solving sequentially for one time step after the other, time-parallel and
space-time methods allow simultaneous solution across multiple time steps. As a
consequence, these methods enable exploitation of substantially more computational
resources than standard space-parallel methods with sequential time stepping. While
classical time-stepping has optimal algorithmic scalability, with best possible com-
plexity when using a scalable solver for each time step, space-time-parallel methods
introduce more computations and/or memory usage to allow the use of vastly more
parallel resources. In other words, space-time parallel methods remain algorithmi-
cally optimal, but with larger constant factors. Their use provides a speedup over
traditional time-stepping when sufficient parallel resources are available to amortize
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their increased cost.

Research on parallel-in-time integration started about 50 years ago with the semi-
nal work of Nievergelt in 1964 [36]. Since then, various approaches have been explored,
including direct methods such as [9,20,33,35,39], as well as iterative approaches based
on multiple shooting, domain decomposition, waveform relaxation, and multigrid in-
cluding [4, 8, 10, 11, 17, 21, 24–28, 31, 32, 34, 41–45]. A recent review of the extensive
literature in this area is [16]. In this paper, we focus on multigrid approaches.

The use of multigrid for adding parallelism to time integration allows for faster
time-to-solution in comparison with classical time-stepping approaches, given enough
computational resources available [11, 17, 44]. A comparison of the different space-
time-parallel approaches, however, does not exist. In this paper, we consider a com-
parison of the three basic options for multigrid on space-time grids: coarsening in
space and time, semicoarsening only in the spatial dimensions, and semicoarsening
only in the temporal dimension. More specifically, we compare space-time multi-
grid (STMG) [26], space-time concurrent multigrid waveform relaxation with cyclic
reduction (WRMG-CR) [27], and multigrid-reduction-in-time (MGRIT) [11] for time
discretizations using backward differences of order k (BDF-k). While many variations
on these and other approaches are possible, they represent the most basic choices for
multigrid methods on space-time grids.

The goal of our comparison is not to simply determine the algorithm with the
fastest time-to-solution for a given problem. Instead, we aim at determining advan-
tages and disadvantages of the methods based on comparison parameters such as
robustness, intrusiveness, storage requirements, and parallel performance. We recog-
nize that there is no perfect method, since there are necessarily trade-offs between
time-to-solution for a particular problem, robustness, intrusiveness, and storage re-
quirements. One important aspect is the effort one has to put into implementing the
methods when aiming at adding parallelism to an existing time-stepping code. While
MGRIT is a non-intrusive approach that, similarly to time stepping, uses an existing
time propagator to integrate from one time to the next, both STMG and WRMG-CR
are invasive approaches. On the other hand, the latter two approaches have better al-
gorithmic complexities than the MGRIT algorithm. In this paper, we are interested in
answering the question of how much of a performance penalty one might pay in using
a non-intrusive approach, such as MGRIT, in contrast with more optimal approaches
like STMG and WRMG-CR. Additionally, we demonstrate the benefit compared to
classical space-parallel time-stepping algorithms in a given parallel environment.

This paper is organized as follows. In Section 2, we review the three multigrid
methods with space-time concurrency, STMG, WRMG-CR, and MGRIT, including
a new description of the use of MGRIT for multistep time integration. In Section
3, we construct a simple model for the comparison. We introduce a parabolic test
problem, derive parallel performance models, and discuss parallel implementations as
well as storage requirements of the three methods. Section 4 starts with weak scaling
studies, followed by strong scaling studies comparing the three multigrid methods
both with one another and with a parallel algorithm with sequential time stepping.
Additionally, we include a discussion of insights from the parallel models as well as
an overview of current research in the XBraid project [2] to incorporate some of the
more intrusive, but highly efficient, aspects of methods like STMG. Conclusions are
presented in Section 5.

2. Multigrid on space-time grids. The naive approach of applying multi-
grid with standard components, i.e., point relaxation and full coarsening, for solving
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parabolic (space-time) problems typically leads to poor multigrid performance (see,
e.g. [26]). In this section, we describe three multigrid algorithms that offer good
performance, allowing parallelism in space and time. For a given parabolic prob-
lem, the methods assume different discretization approaches using either a point-wise
discretization of the whole space-time domain or a semidiscretization of the spatial
domain. However, for a given discretization in both space and time, all methods solve
the same (block-scaled) resulting system of equations.

2.1. Space-time multigrid. The space-time multigrid (STMG) method [26]
treats the whole of the space-time problem simultaneously. The method uses point
smoothers and employs a parameter-dependent coarsening strategy that chooses either
semicoarsening in space or in time at each level of the hierarchy.

Let Σ = Ω×[0, T ] be a space-time domain and consider a time-dependent parabolic
PDE of the form

(2.1) ut + L(u) = b

in Σ, subject to boundary conditions in space and an initial condition in time. Fur-
thermore, L denotes an elliptic operator and u = u(x, t) and b = b(x, t) are functions of
a spatial point, x ∈ Ω, and time, t ∈ [0, T ]. We discretize (2.1) by choosing appropri-
ate discrete spatial and temporal domains. The resulting discrete problem is typically
anisotropic due to different mesh sizes used for discretizing the spatial and temporal
domains. Consider, for example, discretizing the heat equation in one space dimen-
sion and in the time interval [0, T ] on a rectangular space-time mesh with constant
spacing ∆x and ∆t, respectively. If we use central finite differences for discretizing
the spatial derivatives and backward Euler (also, first-order backward differentiation
formula (BDF1)) for the time derivative, the coefficient matrix of the resulting lin-
ear system depends on the parameter λ = ∆t/(∆x)2, which can be considered as a
measure of the degree of anisotropy in the discrete operator.

Analogously to anisotropic elliptic problems, in the parabolic case, there are also
two standard approaches for deriving a multigrid method to treat the anisotropy: the
strategy is to either change the smoother to line or block relaxation, ensuring smooth-
ing in the direction of strong coupling, or to change the coarsening strategy, using
coarsening only in the direction where point smoothing is successful. STMG follows
the second approach. The method uses a colored point-wise Gauss-Seidel relaxation,
based on partitioning the discrete space-time domain into points of different ‘color’
with respect to all dimensions of the problem. That is, time is treated simply as any
other dimension of the problem.

Relaxation is accelerated using a coarse-grid correction based on an adaptive
parameter-dependent coarsening strategy. More precisely, depending on the degree
of anisotropy of the discretization stencil, λ (e.g., λ = ∆t/(∆x)2 in our previous
example), either semicoarsening in space or in time is chosen. The choice for the
coarsening direction is based on a selected parameter, λcrit, which can be chosen, for
example, using Fourier analysis, as was done for the heat equation [26], applying the
two-grid methods using either semicoarsening in space (when λ ≥ λcrit) or in time
(when λ < λcrit). Thus, a hierarchy of coarse grids is created, where going from one
level to the next coarser level, the number of points is reduced either only in the
spatial dimensions or only in the temporal dimension. Rediscretization is used to
create the discrete operator on each level, and the intergrid transfer operators are
adapted to the grid hierarchy. In the case of space-coarsening, interpolation and
restriction operators are the standard ones used for isotropic elliptic problems. For
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time-coarsening, interpolation and restriction are only forward in time, transferring
no information backward in time.

Summing up, assuming a discretization on a rectangular space-time grid with Nx
points in each spatial dimension and Nt points in the time interval, we consider a
hierarchy of space-time meshes, Σl, l = 0,1, . . . , L = log2(NxNt). Let Alu

(l) = g(l)
be the discrete problem on each grid level and λl the degree of anisotropy of the
discretization stencil defining Al. Then, with Px,Rx, Pt, andRt denoting interpolation
and restriction operators for space-coarsening and time-coarsening, respectively, and
for a given parameter λcrit, the STMG V -cycle algorithm for solving a linear parabolic
problem can be written as follows:

STMG (l)
if l is the coarsest level, L then

Solve the coarse-grid system ALu
(L) = g(L).

else

Relax on Alu
(l) = g(l) using colored point-wise Gauss-Seidel relaxation.

if λl < λcrit then
Compute and restrict the residual using restriction in time,
g(l+1) = Rt(g(l) −Alu(l)).

else
Compute and restrict the residual using restriction in space,
g(l+1) = Rx(g(l) −Alu(l)).

end
Solve on next level: STMG(l + 1).
if λl < λcrit then

Correct using interpolation in time, u(l) ← u(l) + Ptu(l+1).
else

Correct using interpolation in space, u(l) ← u(l) + Pxu(l+1).
end

Relax on Alu
(l) = g(l) using colored point-wise Gauss-Seidel relaxation.

end

Note that STMG algorithms of other cycling types such as F - or W -cycles can be
defined, which are of particular interest for improving the overall convergence rates
[26].

Remark: While for one-step time-discretization methods, such as BDF1, usually
a red-black ordering of the grid points is sufficient, for multi-step time discretizations,
more colors are needed. As a consequence, the amount of parallelism decreases with
relaxation performed on points of one color at a time. Alternatively, a two-color
ordering could be used in combination with a Jacobi-like in time approach, i.e., a
backward ordering of the grid points in time.

2.2. Multigrid waveform relaxation. Waveform relaxation methods are
based on applying standard iterative methods to systems of time-dependent ordi-
nary differential equations (ODEs). Waveform relaxation, used in combination with
either multigrid [32, 44] or domain decomposition [5, 18] ideas to treat the spatial
problem expands the applicability of standard iterative methods to include time-
dependent PDEs. Multigrid waveform relaxation (WRMG) [32] combines red-black
zebra-in-time line relaxation with a semicoarsening strategy, using coarsening only in
the spatial dimension.

For solving parabolic problems as given in (2.1), in contrast to STMG described
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above, the WRMG algorithm uses a method of lines approximation, discretizing only
the spatial domain, Ω. Thus, a semidiscrete problem is generated, i.e., the PDE is
first transformed to a system of time-dependent ODEs of the form

(2.2)
d

dt
u(t) +Q(u(t)) = b(t), u(0) = g0, t ∈ [0, T ],

where u(t) and b(t) are vector functions of time, t ∈ [0, T ] (i.e., the semidiscrete ana-
logues of the functions u and b in (2.1)), with (d/dt)u(t) denoting the time derivative
of the vector u(t), and where Q is the discrete approximation of the operator L in
(2.1). In the linear case, considered in the remainder of this section, function Q(⋅) cor-
responds to a matrix-vector product. The idea of waveform (time-line) relaxation [30]
is to apply a standard iterative method such as Jacobi or Gauss-Seidel to the ODE
system (2.2). Therefore, let Q = D − L − U be the splitting of the matrix into its
diagonal, strictly lower, and strictly upper triangular parts; note that D,L, and U
may be functions of time. Then, one step of a Gauss-Seidel-like method for (2.2) is
given by

(2.3)
d

dt
u(new)(t)+ (D−L)u(new)(t) = Uu(old)(t)+ b(t), u(new)(0) = g0, t ∈ [0, T ],

with u(old) and u(new) denoting known and to be updated solution values, respectively.
That is, one step of the method involves solving Ns linear, scalar ODEs, where Ns is
the number of variables in the discrete spatial domain (e.g., Ns = N2

x if discretizing
on a regular square mesh in 2D). Furthermore, if Q is a standard finite difference
stencil and a red-black ordering of the underlying grid points is used, the ODE system
decouples, i.e., each ODE can be integrated separately and in parallel with the ODEs
at grid points of the same color.

The performance of Gauss-Seidel waveform relaxation is accelerated by a coarse-
grid correction procedure based on semicoarsening in the spatial dimensions. More
precisely, discrete operators are defined on a hierarchy of spatial meshes and standard
interpolation and restriction operators as used for isotropic elliptic problems (e.g., full-
weighting restriction and bilinear interpolation for 2D problems), allowing the transfer
between levels in the multigrid hierarchy. Parallelism in this algorithm, however, is
limited to spatial parallelism. Space-time concurrent WRMG enables parallelism
across time, i.e., parallel-in-time integration of the scalar ODEs in (2.3) that make
up the kernel of WRMG. While in the method described in [44] only some time
parallelism was introduced by using pipelining or the partition method, WRMG with
cyclic reduction (WRMG-CR) [27] enables full time parallelism within WRMG.

The use of cyclic reduction within waveform relaxation is motivated by the con-
nection of multistep methods to recurrence relations. Therefore, let ti = iδt, i =
0,1, . . . ,Nt, be a temporal grid with constant spacing δt = T /Nt, and for i = 1, . . . ,Nt,
let un,i be an approximation to un(ti), with the subscript n = 1, . . . ,Ns indicating
that we consider one ODE of the system. Then, a general k-step time discretization
method for a linear, scalar ODE, e.g., one component of the ODE systems in (2.2) or
(2.3), with solution variable un and initial condition un(0) = g0 is given by

un,0 = g0

un,i =
min{i,k}

∑
s=1

a
(n)
i,i−sun,i−s + gn,i, i = 1,2, . . . ,Nt.(2.4)
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That is, the solution, un,i, at time ti depends on solution-independent terms, gn,i,
e.g., related to boundary conditions or source terms or connections to different spa-
tial points, as well as on the solution at the previous k time steps, except at the
beginning, where the method builds up from a one-step method involving only the
initial condition at time zero. Thus, the time discretization method (2.4) is equiva-
lent to a linear system of equations with lower triangular structured coefficient matrix,
or, equivalently, to a linear recurrence relation of order k. Note that in the case of

constant-coefficients, i.e., in the case that coefficients a
(n)
i,i−s are time-independent, we

have a
(n)
i,i−s = a

(n)
µ,s with µ = i for each i < k and µ = k otherwise. In practice, coef-

ficients a
(n)
µ,s are independent of n; however, they may not be, e.g., if using different

time discretizations across the spatial domain. Considering this connection to linear
recurrences and the fact that linear recurrences can be parallelized efficiently using a
cyclic reduction approach [7, 22, 29], motivates using cyclic reduction for integrating
the ODEs in (2.3) and, thus, introducing temporal parallelism in WRMG.

Altogether, assuming a discrete spatial domain with Nx points in each spatial di-
mension, WRMG-CR uses a hierarchy of spatial meshes, Ωl, l = 0,1, . . . , L = log2(Nx).
Let d

dt
u(l) +Qlu(l) = b(l), u(l)(0) = g(l)0 be the ODE system on level l, where Ql rep-

resents a time-independent spatial discretization on the mesh Ωl. Furthermore, for
l = 0,1, . . . , L, let Alu

(l) = g(l) be the equivalent linear system of equations for a given
linear multistep time discretization method. Note that the linear systems are of the
form

Alu
(l) ≡ (I

N
(l)
s
⊗ J +Ql ⊗ INt)u(l) = g(l),

where I
N
(l)
s

and INt are identity matrices on the discrete spatial and temporal domains,

respectively, and J is the (lower-triangular) matrix describing the discretization in
time. With Px and Rx denoting the interpolation and restriction operators (also used
in STMG for space-coarsening), the WRMG-CR V -cycle algorithm for solving (2.2)
can be written as follows:

WRMG-CR (l)
if l is the coarsest level, L then

Solve the coarse-grid system ALu
(L) = g(L).

else

1. Relax on d
dt
u(l) +Qlu(l) = b(l), u(l)(0) = g(l)0 using red-black Gauss-Seidel

waveform relaxation with cyclic reduction, i.e., solve Alu
(l) = g(l) for A in

red-black block ordering with respect to spatial variables and using cyclic
reduction for solving along time lines.

2. Compute and restrict the residual using restriction in space,
g(l+1) = Rx(g(l) −Alu(l)).

3. Solve on the next level: WRMG-CR(l + 1).
4. Correct using interpolation in space, u(l) ← u(l) + Pxu(l+1).

5. Relax on d
dt
u(l) +Qlu(l) = b(l), u(l)(0) = g(l)0 using red-black Gauss-Seidel

waveform relaxation with cyclic reduction.
end

Other cycling types can be defined and have been studied, e.g., [27] discusses the use
of full multigrid (FMG).

Remark: While we focus on the use of cyclic reduction, which is very efficient for
the case of a single-step time discretization (k = 1), it is clear that any algorithm with
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good parallel efficiency can be used to solve the banded lower-triangular linear systems
in the waveform relaxation step. In particular, for multistep methods (k ≥ 2), it is
computationally more efficient to use the recursive doubling method [23] instead of
cyclic reduction (see [27]), but block cyclic reduction (as explained below for multigrid-
reduction-in-time) or residual-correction strategies could also be used.

2.3. Multigrid-reduction-in-time. The multigrid-reduction-in-time (MGRIT)
algorithm [11] is based on applying multigrid reduction techniques [37, 38] to time
integration, and can be seen as a multilevel extension of the two-level parareal algo-
rithm [31]. The method uses block smoothers for relaxation and employs a semicoars-
ening strategy that, in contrast to WRMG, coarsens only in the temporal dimension.
To describe the MGRIT algorithm, we consider a system of ODEs of the form

(2.5) u′(t) = f(t, u(t)), u(0) = g0, t ∈ [0, T ].

Note that (2.5) is a more general form of (2.2). We choose the form (2.5) to under-
line that we do not assume a specific discretization of the spatial domain, allowing a
component-wise viewpoint of the ODE system as in the WRMG approach, but con-
sider the discrete spatial domain as a whole. Instead, we choose a discretization of
the time interval. For ease of presentation, we first review the MGRIT algorithm for
one-step time discretization methods as introduced in [11]. We then explain how to re-
cast multistep methods as block single-step methods, which is the basis for extending
MGRIT to multistep methods.

Denoting the temporal grid with constant spacing δt = T /Nt again by ti = iδt,
i = 0,1, . . . ,Nt, we now let ui be an approximation to u(ti) for i = 1, . . . ,Nt. Then,
in the case that f is a linear function of u(t), the solution to (2.5) is defined via
time-stepping, which can also be represented as a forward solve of the linear system,
written in block form as

(2.6) Au ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I
−Φδt I

⋱ ⋱
−Φδt I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

⋮
uNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

g0

g1

⋮
gNt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

≡ g,

where Φδt represents the time-stepping operator that takes a solution at time ti to
that at time ti+1, along with a time-dependent forcing term gi. Hence, in the time
dimension, this forward solve is completely sequential.

MGRIT enables parallelism in the solution process by replacing the sequential
solve with an optimal multigrid reduction method using a hierarchy of coarse temporal
grids. For simplicity, we only describe the two-level MGRIT algorithm; the multilevel
scheme results from applying the two-level method recursively. The coarse temporal
grid, or the set of C-points, is derived from the original (fine) temporal grid by
considering only every m-th temporal point, where m > 1 is an integer. That is, the
coarse temporal grid consists of Nt/m points, denoted by Tj = j∆T, j = 0,1, . . . ,Nt/m,
with constant spacing ∆T =mδt; the remaining temporal points define the set of F -
points.

The MGRIT algorithm uses the block smoother FCF -relaxation, which con-
sists of three sweeps: F -relaxation, then C-relaxation, and again F -relaxation. F -
relaxation updates the unknowns at F -points by propagating the values of C-points at
times Tj across a coarse-scale time interval, (Tj , Tj+1), for each j = 0,1, . . . ,Nt/m− 1.
Note that within each coarse-scale time interval, these updates are sequential, but
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there are no dependencies across coarse time intervals, enabling parallelism. C-
relaxation updates the unknowns at C-points analogously, using the values at neigh-
boring F -points. The intergrid transfer operators of MGRIT are injection, RI , and
‘ideal’ interpolation, P , with ‘ideal’ interpolation corresponding to injection from the
coarse grid to the fine grid, followed by F -relaxation with a zero right-hand side. The
coarse-grid system, A∆u∆ = g∆, is of the same form as the fine-grid system (2.6),
with Φδt replaced by the coarse-scale time integrator Φ∆T that takes a solution u∆,j

at time Tj to that at time Tj+1, along with consistently restricted forcing terms g∆,j .
The two-level MGRIT algorithm can then be written as follows:

Two-level MGRIT
1. Relax on Au = g using FCF -relaxation.

2. Compute and restrict the residual using injection, g∆ = RI(g −Au).
3. Solve the coarse-grid system A∆u∆ = g∆.

4. Correct using ‘ideal’ interpolation, u← u + Pu∆.

Multilevel schemes of various multigrid cycling types such as V -, W -, and F -cycles
can be defined by applying the two-level method recursively to the system in Step 3.
Indeed, it is for this reason that FCF -relaxation is used, in contrast to the two-level
algorithm, for which F -relaxation alone yields a scalable solution algorithm. When
using F -relaxation in the two-level algorithm, the resulting approach can be viewed
as a parareal-type algorithm [11,13,14,19,31].

Remark: For nonlinear functions f , the full approximation storage (FAS) ap-
proach [6] can be used to extend the MGRIT algorithm [13].

2.3.1. MGRIT for multistep time integration. Consider the system of
ODEs in (2.5) on a temporal grid with time points ti, i = 0,1, . . . ,Nt as before,
but consider the general setting of non-uniform spacing given by τi = ti − ti−1 (in the
scheme considered here, this will be the setting on coarse time grids). As before, let
ui be an approximation to u(ti) for i = 1, . . . ,Nt, where u0 = g0 is the initial condition
at time zero. Then, a general k-step time discretization method for (2.5) is given by

ui = Φ
(µ)
i (ui−1, ui−2, . . . , ui−µ) + gi

∶=
µ=min{i,k}

∑
s=1

Φ
(µ,s)
i (ui−s) + gi, i = 1,2, . . . ,Nt,(2.7)

where, analogously to (2.4), the solution, ui, at time ti depends on solution-
independent terms, gi, as well as on the solution at the previous k time steps, except
at the beginning, where the method builds up from a one-step method involving only
the initial condition at time zero. Note that from a time-stepping perspective, the key

is the time-stepping operator, Φ
(µ)
i , that takes a solution at times ti−1, ti−2, . . . , ti−µ to

that at time ti along with a time-dependent forcing term gi with µ = i for each i < k
and µ = k otherwise.

Extending the MGRIT algorithm described above to this multistep time dis-
cretization setting is based on the idea of recasting the multistep method (2.7) as a
block one-step method. This idea is the key to keeping the MGRIT approach non-

intrusive so that only the time-stepping operator, Φ
(µ)
i , is needed. The approach

works in both the linear and nonlinear case; for simplicity, we consider the linear case
and describe it in detail.

The idea is to group unknowns into k-tuples to define new vector variables

wn = (ukn, ukn+1, . . . , ukn+k−1)T , n = 0,1, . . . , (Nt + 1)/k − 1,
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then rewrite the method as a one-step method in terms of the wn. For example, in
the BDF2 case in Figure 1, we have

wn = [ u2n

u2n+1
] = [ Φ

(µ)
2n (u2n−1, u2n−2) + g2n

Φ
(µ)
2n+1(Φ

(µ)
2n (u2n−1, u2n−2) + g2n, u2n−1) + g2n+1

]

= Ψn([
u2n−2

u2n−1
]) + [ g2n

g2n+1
] = Ψn(wn−1) + gn.(2.8)

In the linear case, it is easy to see that the step function Ψn is a block 2 × 2 matrix

(k × k for general BDF-k) composed from the Φ
(µ,s)
i matrices in (2.7). In addition,

the method yields the same lower bi-diagonal form as (2.6) with the Ψn matrices
on the lower diagonal. Implementing this method in XBraid [2] is straightforward
because the step function in (2.8) just involves making calls to the original BDF2
method, whether in the linear setting or the nonlinear setting. Note that if the u2n

result in (2.8) is saved, it can be used to compute the u2n+1 result, hence only two
spatial solves are required to compute a step, whereas a verbatim implementation of
the block matrix approach in the linear case would require many more spatial solves.

Ψ12

Ψ11

Ψ22

Ψ21

g

g

Ψ12

Ψ11

Ψ22

Ψ21

g

g

Ψ12

Ψ11

Ψ22

Ψ21

g

g

Fig. 1: Schematic view of the action of F -relaxation in one coarse-scale time interval
for a two-step time discretization method and coarsening by a factor of four; ○ repre-
sent F -points and ∎ represent C-points. The action of F -relaxation on the individual
F -points are distinguished by using different line styles.

All of this generalizes straightforwardly to the BDF-k setting. Note that, even
if we begin with a uniformly spaced grid (as here), this method leads to coarse grids
with time steps (between and within tuples) that vary dramatically. In the BDF2
case considered later, this does not cause stability problems. Research is ongoing for
the higher order cases, where stability may be more of an issue.

3. Cost estimates. In investigating the differences between the three time-
parallel methods, it is useful to construct a simple model for the comparison. In
the model, we consider a diffusion problem in two space dimensions discretized on a
rectangular space-time grid and distributed in a domain-partitioned manner across a
given processor grid.

3.1. The parabolic test problem. Consider the diffusion equation in two
space dimensions,

(3.1) ut −∆u = b(x, y, t), (x, y) ∈ Ω = [0, π]2, t ∈ [0, T ],

with the forcing term (motived by the test problem in [40]),

(3.2) b(x, y, t) = − sin(x) sin(y) (sin(t) − 2 cos(t)) , (x, y) ∈ Ω, t ∈ [0, T ],

and subject to the initial condition,

(3.3) u(x, y,0) = g0(x, y) = sin(x) sin(y), (x, y) ∈ Ω,
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and homogeneous Dirichlet boundary conditions,

(3.4) u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ].

The problem is discretized on a uniform rectangular space-time grid consisting of
an equal number of intervals in both spatial dimensions using the spatial mesh sizes
∆x = π/Nx and ∆y = π/Nx, respectively, and Nt time intervals with a time step size
δt = T /Nt, where Nx and Nt are positive integers and T denotes the final time. Let
uj,k,i be an approximation to u(xj , yk, ti), j, k = 0,1, . . . ,Nx, i = 0,1, . . . ,Nt, at the
grid points (xj , yk, ti) with xj = j∆x, yk = k∆y, and ti = iδt. Using central finite
differences for discretizing the spatial derivatives and first- (BDF1) or second-order
(BDF2) backward differences for the time discretization, we obtain a linear system in
the unknowns uj,k,i. The BDF1 discretization can be written in time-based stencil
notation as

[− 1
δt
I ( 1

δt
I +M) 0] ,

where M can be written in space-based stencil notation as

M =
⎡⎢⎢⎢⎢⎢⎣

−ay
−ax 2(ax + ay) −ax

−ay

⎤⎥⎥⎥⎥⎥⎦
, with ax = 1/(∆x)2 and ay = 1/(∆y)2.

For the BDF2 discretization, we use the variably spaced grid with spacing τi
introduced in Section 2.3.1 since we need it to discretize the coarse grids. In time-
based stencil notation, we have at time point ti

[ r2i
τi(1+ri)

I − (1+ri)
τi

I ( (1+2ri)
τi(1+ri)

I +M) 0 0] , where ri = τi/τi−1.

3.2. Parallel implementation. For the implementation of the three multigrid
methods on a distributed memory computer, we assume a domain-decomposition
approach. That is, the space-time domain consisting of N2

x ×Nt points is distributed
evenly across a logical P 2

x ×Pt processor grid such that each processor holds an n2
x×nt

subgrid. The distributions on coarser grids are in the usual multigrid fashion through
their parent fine grids.

The STMG and WRMG-CR methods were implemented in hypre [1] and for the
MGRIT algorithm, we use the XBraid library [2]. The XBraid package is an im-
plementation of the MGRIT algorithm based on an FAS approach to accommodate
nonlinear problems in addition to linear problems. From the XBraid perspective, the
time integrator, Φ, is a user-provided black-box routine; the library only provides
time-parallelism. To save on memory, only solution values at C-points are stored.
Note that the systems approach for the multistep case does not increase MGRIT
storage. For BDF2, for example, the number of C-point time pairs is half of the
number of C-points when considering single time points. We implemented STMG
and WRMG-CR as semicoarsening algorithms, i.e., spatial coarsening is first done in
the x-direction and then in the y-direction on the next coarser grid level. Relaxation
is only performed on grid levels of full coarsening, i.e., on every second grid level,
skipping intermediate semi-coarsened levels. While this approach has larger memory
requirements (see Section 3.3), it allows savings in communication compared with im-
plementing the two methods with full spatial coarsening. For cyclic reduction within
WRMG-CR, we use the cyclic reduction solver from hypre, which is implemented
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as a 1D multigrid method. The spatial problems of the time integrator, Φ, in the
MGRIT algorithm are solved using the parallel semicoarsening multigrid algorithm
PFMG [3, 12], as included in hypre. For comparison to the classical time-stepping
approach, we also implemented a parallel algorithm with sequential time stepping,
using the same time integrator as in the implementation of MGRIT. In modelling
the time integrator as well as for the experiments in Section 4, we assume PFMG
V (1,1)-cycles with red-black Gauss-Seidel relaxation.

Remark 1: For the point-relaxation of STMG, a four-color scheme would be
needed in case of the BDF2 time discretization. However, for simplicity of implemen-
tation, we use a two-color scheme as in the case of the BDF1 discretization with the
difference that updating of grid points is from high t-values to low t-values, i.e., back-
ward ordering of the grid points in time. Thus, point-relaxation is Gauss-Seidel-like
in space and Jacobi-like in time. The results in Section 4 show that this reduction in
implementation effort is an acceptable parallel performance tradeoff.

Remark 2: In the case of a two-step time discretization method like BDF2, wave-
form relaxation requires solving linear systems where the system matrix, A, has two
subdiagonals. For simplicity of implementation, we approximate these solves by a
splitting method with iteration matrix E = I −M−1A, where A = M − N with M
containing the diagonal and first subdiagonal of A and where N has only entries on
the second subdiagonal, corresponding to the entries on the second subdiagonal of
−A. Since M is bidiagonal we can apply standard cyclic reduction.

However, the use of the splitting method has a profound effect on the robustness
of the waveform relaxation method with respect to the discretization grid, restricting
the use of this implementation of WRMG-CR for BDF2 to a limited choice of grids.
When discretizing the test problem on a regular space-time grid with spatial grid size
∆x in both spatial dimensions and time step δt, the coefficient matrix of the linear
system within waveform relaxation with cyclic reduction arising from a BDF2 time
discretization depends on the parameter λ = δt/(∆x)2. The norm of the iteration
matrix of the splitting method, E, is less than one provided that λ > 1/4. Figure 2
shows error reduction factors for the splitting method applied to a linear system with
128 unknowns for different values of λ. Results show that for values of λ larger than
1/4, the method converges with good error reduction in all iteration steps. However,
for λ < 1/4, error reduction rates are greater than one in the first iterations before
convergence in later iterations. Thus, the method converges asymptotically, but one
or a few iterations are not suitable for a robust approximation within the waveform
relaxation method. For the BDF2 time discretization, we therefore do not include
WRMG-CR in weak and strong parallel scaling studies in Section 4. Note that a
block version of cyclic reduction can be useful to avoid this issue (see Remark at the
end of Section 2.2).

3.3. Storage requirements. In all of the algorithms, we essentially solve a
linear system, Ax = b, where the system matrix A is described by a stencil. Thus,
considering a constant-coefficient setting, storage for the matrix A is negligible and we
only estimate storage requirements for the solution vector. Since STMG and WRMG
require storing the whole space-time grid, whereas for MGRIT only solution values
at C-points are stored, on the fine grid, this requires about N2

xNt or N2
xNt/m storage

locations, respectively, where m denotes the positive coarsening factor in the MGRIT
approach. Taking the grid hierarchy of cyclic reduction (1D multigrid in time) within
WRMG into account increases the storage requirement by a factor of about two,
leading to a storage requirement of about 2N2

xNt storage locations on the fine grid for
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Fig. 2: Error reduction factors per iteration for a splitting method applied to the
linear system within waveform relaxation with cyclic reduction arising from a BDF2
time discretization using 128 time steps for different values of λ = δt/(∆x)2.

WRMG-CR. In STMG and WRMG-CR, the coarse grids are defined by coarsening
by a factor of two in a spatial direction and/or in the time direction per grid level,
while in MGRIT, coarsening by the factor m, only in the time direction is used. Thus,
the ratio of the number of grid points from one grid level to the next coarser grid is
given by two in STMG and WRMG-CR and by m in MGRIT. This leads to a total
storage requirement of about 2N2

xNt for STMG and about 4N2
xNt (taking storage for

cyclic reduction into account) for WRMG-CR. For the MGRIT approach, the total
storage requirement is about N2

xNt/(m − 1).
Note that implementing STMG and WRMG-CR as full spatial coarsening meth-

ods, i.e., coarsening in both spatial dimensions from one grid level to the next coarser
grid, instead of the implemented semicoarsening approaches, additional savings can
be gained. In particular, the ratio of the number of grid points from one grid level to
the next coarser grid is given by four instead of two. This reduces the total storage
requirement of WRMG-CR to about (8/3)N2

xNt. The storage requirement of STMG
is bounded by the extreme cases of coarsening only in space and coarsening only in
time. Thus, implemented with full spatial coarsening, the total storage requirement
of STMG is bounded below by (4/3)N2

xNt and above by 2N2
xNt.

3.4. Performance models. In this section, we derive performance models for
estimating the parallel complexities of STMG, WRMG-CR, MGRIT, and a space-
parallel algorithm with sequential time stepping applied to the test problem; the
resulting formulas will be discussed in Section 4.4. In the models, we assume that the
total time of a parallel algorithm consists of two terms, one related to communication
and one to computation,

Ttotal = Tcomm + Tcomp.

Standard communication and computation models use the three machine-dependent
parameters α,β, and γ. The parameter α represents latency cost per message, β is the
inverse bandwidth cost, i.e., the cost per amount of data sent, and γ is the flop rate of
the machine. “Small” ratios α/β and α/γ represent computation-dominant machines,
while “large” ratios characterize communication-dominant machines. On future archi-
tectures, the parameters are expected to be most likely in the more communication-
dominant regime; a specific parameter set will be considered in Section 4.4. In the
models, we assume that the time to access n doubles from non-local memory is

(3.5) Tcomm = α + nβ,
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and the time to perform n floating-point operations is

(3.6) Tcomp = nγ,

3.4.1. STMG model. As the STMG method employs a parameter-dependent
coarsening strategy, we derive performance models for the extreme cases of coarsening
only in space and coarsening only in time.

Consider performing a two-color point relaxation, where each processor has a
subgrid of size n2

x × nt. The time for one relaxation sweep per color can roughly be
modeled as a function of the stencil size of the fine- and coarse-grid operators. Since
the coarse-grid operators are formed by rediscretization, the stencil size, A (A = 6
for BDF1 and A = 7 for BDF2), is constant. Denoting the number of neighbors in
the spatial and temporal dimensions by Ax and At, respectively, the time for one
relaxation sweep per color on level l (l = 0 is finest) can be modeled as

TS
(1/2)

l ≈ (A − 1)α + ((2−lnxnt/2)Ax + (4−ln2
x/2)At)β + (4−ln2

xnt/2) (2A − 1)γ,

in the case of semicoarsening in space and as

TS
(1/2)

l ≈ (A − 1)α + ((nx2−lnt/2)Ax + (n2
x/2)At)β + (n2

x2−lnt/2) (2A − 1)γ,

in the case of semicoarsening in time. Summing over the two colors and the number
of space or time levels, Lx = log2(Nx) or Lt = log2(Nt), respectively, yields

TSSTMG−x ≈ 2(A − 1)Lxα + (2Axnxnt + (4/3)Atn2
x)β + (4/3)(2A − 1)n2

xntγ,

in the case of semicoarsening in space and

TSSTMG−t ≈ 2(A − 1)Ltα + (2Axnxnt +AtLtn2
x)β + 2(2A − 1)n2

xntγ,

in the case of semicoarsening in time. The time for the residual computation within
the STMG algorithm is roughly the same as the time for relaxation.

The time for restriction and interpolation can be modeled as a function of the
stencil size of the intergrid transfer operators, Px and Pt, for spatial and temporal
semicoarsening, respectively. Note that interpolation and restriction in space only
requires communication with neighbors in the spatial dimensions, whereas communi-
cation with neighbors in only the temporal dimension is needed in the case of temporal
semicoarsening. On level l, the time for interpolation and restriction can be modeled
as

TPl ≈ TRl ≈ (Px − 1) (α + 2−lnxntβ) + (2Px − 1)2−ln2
xntγ/2

and

TPl ≈ TRl ≈ (Pt − 1) (α + n2
xβ) + (2Pt − 1)2−ln2

xntγ/2,

respectively, where the factor of 1/2 in the computation term is due to the fact that
restriction is only computed from C-points and interpolation is only to F -points.
Summing over the number of space or time levels, 2Lx (due to the semicoarsening
implementation) or Lt, respectively, yields

TPSTMG−x ≈ TRSTMG−x ≈ (Px − 1)2Lxα + 2(Px − 1)nxntβ + (2Px − 1)n2
xntγ,
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in the case of semicoarsening in space and

TPSTMG−t ≈ TRSTMG−t ≈ (Pt − 1)Ltα + (Pt − 1)Ltn2
xβ + (2Pt − 1)n2

xntγ,

in the case of semicoarsening in time. Note that Px = 3 and Pt = 2 in the algorithm.
The time of one V (ν1, ν2)-cycle of the STMG algorithm can then be modeled as

(ν1 + ν2 + 1)TSSTMG−x + 2TPSTMG−x ≤ TSTMG ≤ (ν1 + ν2 + 1)TSSTMG−t + 2TPSTMG−t.

3.4.2. WRMG-CR model. The main difference between WRMG-CR and
STMG with coarsening only in space is the smoother. The STMG algorithm uses
point smoothing, whereas WRMG-CR uses (time-) line relaxation on a spatial sub-
domain. Consider performing a two-color waveform relaxation where each processor
has a subgrid of size σxn

2
x × nt, 0 < σx ≤ 1. In one sweep of a two-color waveform

relaxation, for each color, a processor must calculate the right-hand side for the line
solves and perform the line solves (i.e., solving a bidiagonal linear system as described
in Remark 2 in Section 3.2) using cyclic reduction. Modeling the cyclic reduction al-
gorithm as a 1D multigrid method requires two communications and six floating-point
operations per half the number of points per grid level. Summing over the number
of cyclic reduction levels, Lt = log2(Nt), the time of the line solves within waveform
relaxation can be modeled as

TCR(σx) ≈ 2Ltα + 2Ltσxn
2
xβ + 6σxn

2
xntγ.

Calculating the right-hand side for the line solves requires communications with Ax
neighbors in space and At neighbors in time, where Ax+At = A−2 with A denoting the
(constant) stencil size of the fine- and coarse-grid operators. Note that we consider a
2-point stencil for the cyclic reduction solves. The time for one two-color waveform
relaxation sweep on level l can then roughly be modeled as

TSl ≈ 2(Ax +At)α + (2−lnxntAx + 4−ln2
xAt)β + 4−ln2

xnt ⋅ 2(Ax +At)γ + 2TCR(2−2l−1).

Summing over the number of grid levels, Lx = log2(Nx), yields

TSWRMG ≈ 2(Ax +At)Lxα + (2Axnxnt + (4/3)Atn2
x)β + (4/3)2(Ax +At)n2

xntγ

+
Lx

∑
l=0

2TCR(2−2l−1)

≈ 2(Ax +At + 2Lt)Lxα + (2Axnxnt + (4/3)(At + 2Lt)n2
x)β

+ (8/3)(Ax +At + 3)n2
xntγ.

The time for the residual computation, interpolation, and restriction is the same
as these times within the STMG algorithm with semicoarsening only in space and,
thus, the time of one V (ν1, ν2)-cycle of WRMG-CR can be modeled as

TWRMG ≈ (ν1 + ν2)TSWRMG + TSSTMG−x + 2TPSTMG−x.

3.4.3. MGRIT model. Due to the non-intrusive approach of the MGRIT algo-
rithm, it is natural to derive performance models in terms of units of spatial solves [11].
A full parallel performance model based on the standard communication and compu-
tation models (3.5) and (3.6) can then be easily developed for a given solver. Assuming
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that PFMG V (1,1)-cycles are used for the spatial solves, such a model was derived
in [11] which is generalized for a BDF-k time discretization method as follows: Con-
sider solving the spatial problems within relaxation and restriction on the finest grid

to high accuracy requiring ν
(0)
x PFMG iterations. Spatial solves within relaxation and

restriction on coarse grids as well as within interpolation on all grids are approximated

by ν
(l)
x PFMG iterations. Furthermore, assume that each processor has a subgrid of

size n2
x ×nt. Since restriction and interpolation correspond to C- or F -relaxation, re-

spectively, the time per processor for the spatial solves can be approximately modeled
as

⎛
⎝
k ⋅ 2ν(0)x + kν

(l)
x (m + 1)
(m − 1)

⎞
⎠
ntTPFMG + 2k2(3m − 1)

(m − 1) ntn
2
xγ,

where m > 0 denotes the coarsening factor, TPFMG is the time of one PFMG V (1,1)-
cycle and the γ-term represents the time for computing the right-hand side of the
spatial problems. Each F - or C- relaxation sweep requires at most one parallel com-
munication of the local spatial problem (of size kn2

x) and, thus, the time of one
V (1,0)-cycle of MGRIT is given by

TMGRIT ≈ 5Lt(α + kn2
xβ) +

⎛
⎝
k ⋅ 2ν(0)x + kν

(l)
x (m + 1)
(m − 1)

⎞
⎠
ntTPFMG + 2k2(3m − 1)

(m − 1) ntn
2
xγ,

where Lt = logm(Nt) denotes the number of time levels in the MGRIT hierarchy.

3.4.4. Time-stepping model. Sequential time stepping requires computing
the right-hand side of the spatial problem and solving the spatial problem at each
time step. Thus, the time for sequential time stepping can be modeled as

Tts ≈ Nt (ν(ts)x TPFMG + 2kn2
xγ) ,

where ν
(ts)
x is the number of PFMG iterations for one spatial solve.

4. Parallel results. In this section, we consider weak and strong parallel scaling
properties of the three multigrid methods. Furthermore, we are interested in the
benefit of the methods compared to sequential time stepping. We apply the three
multigrid methods and a parallel algorithm with sequential time stepping to the test
problem on the space-time domain [0, π]2 × [0, T ]. On the finest grid of all methods,
the initial condition is used as the initial guess for t = 0, and a random initial guess
for all other times to ensure that we do not use any knowledge of the right-hand
side that could affect convergence. Furthermore, in the case of BDF2 for the time
discretization, we use the discrete solution of the BDF1 scheme for the first time
step t = δt. Coarsening in STMG is performed until a grid consisting of only one
variable is reached; semicoarsening in WRMG-CR and MGRIT stops at three points
in each spatial dimension or three time steps, respectively. The convergence tolerance
is based on the absolute space-time residual norm and chosen to be 10−6, measured
in the discrete L2-norm unless otherwise specified.

Numerical results in this section are generated on Vulcan, a Blue Gene/Q system
at Lawrence Livermore National Laboratory consisting of 24,576 nodes, with sixteen
1.6 GHz PowerPC A2 cores per node and a 5D Torus interconnect.
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Notation. The space-time grid size and the final time, T , of the time interval
uniquely define the step sizes of the discretization using the relationships ∆x = ∆y =
π/Nx and δt = T /Nt. To facilitate readability, only the space-time grid size and final
time are specified in the caption of tables and figures, and the following labels are
used

FirstOrder2D(T = ⋅) test problem with BDF1 time discretization;
SecondOrder2D(T = ⋅) test problem with BDF2 time discretization.

4.1. Challenges of a fair comparison. Having implemented STMG and
WRMG-CR in hypre and MGRIT using XBraid and hypre ensures a similar im-
plementation complexity as all implementations use C and Message Passing Interface
(MPI). However, even with this basis, several parameter spaces of both the algorithms
themselves and the parallelization make a fair comparison of the three methods chal-
lenging. In terms of algorithmic parameters, many choices must be made for each
method such as the type of multigrid cycling scheme (e.g., V -cycle vs. F -cycle), the
coarsening strategy (e.g., the choice of the parameter, λcrit, determining the coarsen-
ing direction in STMG or the coarsening factor, m, in the MGRIT algorithm), and
the relaxation scheme (e.g., the number of pre- and post-relaxation steps in STMG
and WRMG-CR or the solver and accuracy for the spatial problems of the time inte-
grator, Φ, in MGRIT). Additionally, for the parallel implementation, the number of
processors and their arrangement on a processor grid, i.e., the amount of parallelism
in each direction, must be chosen. Since the processor distribution determines the
ratio of computation vs. communication on and across processors, one arrangement
of the processors can lead to completely different parallel performance than another
arrangement. Note that the processor distribution can be restricted by memory re-
quirements of the algorithms.

There is, of course, a very large parameter space for each of these algorithms,
considering V -, F -, and W -cycle variants, number of relaxation sweeps, and so forth.
In this study, we consider a subset of these possibilities, informed based on experi-
ences with these algorithms reported in the literature, the need for finite effort within
implementation, and general practice and experience with multigrid in a parallel en-
vironment. Thus, we consider only V -cycle algorithms, known to offer better parallel
scaling than F - or W -cycles, even though it is known that F -cycles are needed for
algorithmic scalability of STMG [26]. To ensure convergence of WRMG-CR using the
splitting method within relaxation in the case of BDF2 for the time discretization, the
parameter λ = δt/(∆x)2 must be greater than 1/4 on all grid levels where relaxation
is performed (see Remark 2 in Section 3.2). Since only the spatial grid size, ∆x,
increases by a factor of two per grid level in the multigrid hierarchy, λ decreases by
a factor of four per grid level. As a consequence, the implementation of WRMG-CR
using the splitting method within relaxation is not suitable for meaningful strong
and weak parallel scaling studies. Consider, for example, the test problem Secon-
dOrder2D(T = 4π), discretized on a 652 × 65 space-time grid. Then, λ is greater than
1/4 on all grid levels where relaxation is performed. In Figure 3, we plot the accuracy
of the approximation, maxi ∥ei∥, i.e., the maximum of the errors to the discrete solu-
tion of SecondOrder2D(T = 4π) at each time step, measured in the discrete L2-norm
as a function of the compute time. The linear-log scaling of the axes shows typical
multigrid convergence. However, if we were to use this example for a proper domain-
refinement weak scaling study, on 8 processors (i.e., consistent refinement by a factor
of two in each dimension), we have to consider a uniform grid of ∆x = ∆y = π/128
and 129 points in time. Then, the condition on λ is not fulfilled on all grid levels
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in the multigrid hierarchy where relaxation is performed and, thus, one iteration of
the splitting method within relaxation is not sufficient for convergence. Instead, for
V (1,1)-cycles for example, we need 30 iterations of the splitting method to get rea-
sonable convergence, which is prohibitively costly. For the BDF2 time discretization,
we therefore do not include WRMG-CR in weak and strong parallel scaling studies.
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Fig. 3: Accuracy of the approximation to the solution of SecondOrder2D(T = 4π) on
a 652 × 65 space-time grid using WRMG-CR V (1,1)- and V (2,1)-cycles and using
one iteration of the splitting method within relaxation on a single processor; each ◇
and ◆ represents one iteration of the V (1,1)- or V (2,1)-scheme, respectively.

4.2. Weak parallel scaling. We apply several variants of the three multigrid
schemes to the test problem. For both time discretization schemes, we look at compu-
tation time and iteration counts to demonstrate good parallel scaling. In Section 4.3,
this set of variants is then considered for the comparison to sequential time stepping.

Figure 4 shows weak parallel scaling results for several multigrid variants ap-
plied to the test problem with BDF1 time discretization on the space-time domain
[0, π]2 × [0, π2/64]. The problem size per processor is fixed at (roughly) 129 points in
each spatial direction and 257 points in the temporal direction. For proper domain-
refinement, we quadruple the number of points in time when doubling the number of
points in space. Thus, on one processor, we use a uniform grid of ∆x = ∆y = π/128
and 257 points in time while, on 4096 processors, we use a uniform grid of ∆x = ∆y =
π/1024 and 16,385 points in time. Shown are results for STMG and WRMG-CR
variants with one pre- and one post-smoothing step and with two pre- and one post-
smoothing step. The parameter λcrit determining the coarsening direction in STMG
is chosen to be λcrit = 0.6 based on the Fourier analysis results in [26]. For MGRIT,
we consider standard FCF -relaxation and a non-uniform coarsening strategy in the
temporal direction that coarsens by factors of 16 until fewer than 16 temporal points
are left on each processor, then coarsens by factors of 2; details of the benefits of
this coarsening strategy are described in [11]. Furthermore, we limit computational
work of the spatial solves by limiting the number of PFMG iterations on the fine
grid to a maximum of 9 iterations and to a maximum of 2 iterations on coarse grids.
Additionally, we consider MGRIT with spatial coarsening, denoted MGRIT w/ sc. in
the figure, with space-coarsening using standard bilinear interpolation and restriction
operators performed on grid levels with CFL-number δt/(∆x)2 > 2. The time curves
in Figure 4 show good parallel scaling for all three multigrid methods. More precisely,
the overall compute time of both STMG variants and MGRIT with spatial coarsening
increases by a factor of about 1.3 over 4096-way parallelism, by a factor of about 1.6
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when using MGRIT without spatial coarsening and by a factor of about 1.8 for both
WRMG-CR variants.
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Fig. 4: Weak parallel scaling: time to solve FirstOrder2D(T = π2/64) using STMG,
WRMG, and MGRIT variants. The problem size per processor is about 1292 × 257.

Table 1 details the results of Figure 4 with timings split up into timings of the
setup and solve phases of the algorithms. While the timings of the solve phase show
good parallel scaling for all methods with only a slight increase for larger processor
counts, due to the increase in the number of multigrid levels and corresponding com-
munication latency costs, this is not the case for the timings of the setup phase. For
MGRIT, the setup time is about constant across the number of processors and negligi-
ble compared to the solve time. However, for STMG and particularly for WRMG-CR,
setup times increase with the number of processors. This is a known implementation
inefficiency in hypre that is expected to be fixed at some point in the future and
does not need further exploration here, in particular because the added time does
not greatly change the overall comparison between these approaches. Results further
show that iteration counts are largely independent of the problem size.

The situation is a bit different for the BDF2 time discretization. Table 2 shows
weak scaling results for solving SecondOrder2D(T = 2π−δt) using STMG and MGRIT
with timings split up into setup and solve times as well as iteration counts. Note that
considering a second-order time discretization, matching the accuracy of the spatial
discretization, for proper weak scaling we increase the number of processors by factors
of eight, as opposed to factors of 16 in the one-step case considered in Figure 4. Here,
on one processor, we use a uniform grid of ∆x = ∆y = π/128 and 257 points in time
while, on 4096 processors, we use a uniform grid of ∆x = ∆y = π/1024 and 2049
points in time. We consider STMG V -cycles with two pre- and one post-smoothing
step and parameter λcrit = 0.555; V (1,1)-cycles do not show reasonable convergence.
For MGRIT, V -cycles with FCF -relaxation and the non-uniform coarsening strategy
described above are used. We limit the computational cost of the spatial solves to at
most 9 PFMG iterations on the fine grid and to at most 4 iterations on all coarse grids.
Note that the spatial problems are more difficult to solve than in the one-step case
since on the finest grid, the time-step size is of the same order as the spatial grid size
and, thus, a higher accuracy of the spatial solves on coarse grids is needed. Additional
spatial coarsening in MGRIT is not considered as the CFL-number stays balanced.
Table 2 shows that for MGRIT, compute times increase in the beginning but stagnate
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number of processors, P = 1 16 256 4096

STMG 0.63 s 2.17 s 2.95 s 3.21 s

Tsetup WRMG-CR 2.13 s 4.59 s 6.17 s 7.78s

MGRIT 0.13 s 0.14 s 0.14 s 0.14 s

STMG V (1,1) 14.42 s 18.75 s 16.64 s 17.06 s

STMG V (2,1) 16.06 s 21.06 s 21.66 s 18.83 s

WRMG-CR V (1,1) 25.13 s 39.51 s 39.44 s 41.53 s

Tsolve WRMG-CR V (2,1) 29.08 s 46.13 s 45.75 s 48.36 s

MGRIT 107.21 s 163.78 s 167.10 s 171.97 s

MGRIT w/ sc. 94.82 s 124.33 s 125.09 s 126.71 s

STMG V (1,1) 7 7 6 7

STMG V (2,1) 6 6 6 5

WRMG-CR V (1,1) 5 5 5 5

iter WRMG-CR V (2,1) 4 4 4 4

MGRIT 5 6 6 6

MGRIT w/ sc. 5 5 5 5

Table 1: Weak parallel scaling: setup and solve times and number of iterations for
solving FirstOrder2D(T = π2/64) using STMG, WRMG, and MGRIT variants. The
problem size per processor is about 1292 × 257.

at higher processor counts. Although stagnation is observed at larger processor counts
than in the one-step case, the overall compute time increases by a factor of about 1.6
(the same as in the one-step case) over 4096-way parallelism. Furthermore, Table 2
shows that iteration counts are again independent of the problem size.

number of processors, P = 1 8 64 512 4096

Tsetup STMG 0.57 s 1.92 s 3.71 s 4.17 s 4.53 s

MGRIT 0.13 s 0.14 s 0.14 s 0.14 s 0.14 s

Tsolve STMG V (2,1) 33.66 s 42.00 s 62.52 s 63.08 s 76.90 s

MGRIT 162.17 s 209.29 s 236.31 s 250.35 s 261.49 s

iter STMG V (2,1) 14 16 19 19 23

MGRIT 4 4 4 4 4

Table 2: Weak parallel scaling: setup and solve times and number of iterations for
solving SecondOrder2D(T = 2π− δt) using STMG and MGRIT. The problem size per
processor is about 1292 × 257.

For the STMG method, however, compute times increase by a factor of about 2.4
over 4096-way parallelism and iteration counts do not appear to be perfectly bounded
independently of the problem size. The increase in iteration counts indicates that
the implementation is not robust with respect to the discretization grid which is
consistent with results in [26]. For a robust implementation, F -cycles have to be
considered; however, this implementation effort would go beyond the scope of this
paper and the factor of 1.5 in iterations with V -cycles almost certainly outweighs the
worse parallel scalability expected to be seen with F -cycles.

4.3. Strong parallel scaling. The above results show that the three multigrid
methods obtain good weak parallel scalability, particularly for the BDF1 time dis-
cretization. Now, we focus on the performance of these methods compared with one
another and to traditional space-parallel algorithms with sequential time stepping.

Figure 5 shows compute times for solving FirstOrder2D(T = π2) on a 1282×16,384
space-time grid using the set of STMG, WRMG-CR, and MGRIT variants consid-
ered in the weak parallel scaling study in Figure 4 and a space-parallel algorithm
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with sequential time stepping. For the time-stepping approach, the spatial domain
is distributed evenly such that each processor’s subdomain is approximately a square
in space. When using 16 processors, for example, each processor owns a square of
approximately 32 × 32. Since considering 16 processors for distributing the spatial
domain appears to be an efficient use of computational resources with respect to ben-
efits in runtime, for the space-time approaches, we parallelize over 16 processors in the
spatial dimensions, with increasing numbers of processors in the temporal dimension.
That is, with Pt denoting the number of processors used for temporal parallelism,
the space-time domain is distributed across 16Pt processors such that each processor
owns a space-time hypercube of approximately 322 × 16,384/Pt. Note that due to the
storage requirements of STMG and WRMG-CR, at least eight processors for temporal
parallelism must be used in order to avoid memory issues in the given parallel com-
putational environment. For MGRIT, even Pt = 1 would be possible, but the required
compute time is much larger than for any of the other methods, due to the computa-
tional overhead inherent in the MGRIT approach; thus, Figure 5 only presents results
for MGRIT with Pt ≥ 4. Results demonstrate the large computational overhead of the
MGRIT approach in contrast with STMG, WRMG-CR, and traditional time step-
ping. However, this extra work can be effectively parallelized at very large scales with
excellent strong parallel scalability. While on smaller numbers of processors, MGRIT
is slower than time stepping we see good speedup at higher processor counts. For
example, considering 64 processors, the space-parallel algorithm with sequential time
stepping is faster than the space-time-concurrent MGRIT algorithm by a factor of
about six or by a factor of about four when considering MGRIT with spatial coarsen-
ing. Increasing the number of processors to 16,384, however, MGRIT is faster with a
speedup of up to a factor of about 42 compared to sequential time stepping with 16
processors used for spatial parallelism.
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Fig. 5: Strong parallel scaling: time to solve FirstOrder2D(T = π2) on a 1282×16,384
space-time grid using sequential time-stepping, STMG, WRMG-CR, and MGRIT.

With STMG and WRMG-CR, we can benefit over the time stepping approach
at much smaller scales and achieve greater speedup at high processor counts. Con-
sidering 128 processors, i.e., adding eight-way temporal parallelism to 16-way spatial
parallelism, STMG is already faster than 16-way space-parallel time stepping, with
a speedup of up to a factor of about 15. For WRMG-CR, the speedup is about a
factor of five. Increasing the number of processors to 16,384 results in a speedup,
measured relative to the time for time stepping with 16-way spatial parallelism, of
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up to a factor of 82 for WRMG-CR and of 723 for STMG. Scaling properties of the
two approaches are excellent at the beginning, with poorer scaling at larger processor
counts, especially for the WRMG-CR method. For higher levels of temporal paral-
lelism, the number of time steps per processor is small and cyclic reduction becomes
problematic which can be explained by the performance models developed in Section
3.4, as will be discussed in Section 4.4.

Figure 6 details “effective” parallel efficiencies, i.e., parallel efficiencies relative to
sequential time stepping on a single processor, for one variant of each time-integration
approach considered in Figure 5. For STMG, the numbers are very steady out to 2048
cores, and then despite modest degradation, are still better than the other methods out
to 16K processors. For WRMG-CR, the numbers are less steady, but still acceptable
relative to time-stepping. For MGRIT, the effective efficiencies are small, but almost
perfectly steady out to 16K cores, demonstrating its excellent strong scaling.
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Fig. 6: Strong scaling efficiencies of sequential time-stepping, STMG, WRMG-CR,
and MGRIT. For each method, parallel efficiency is measured relative to time stepping
on a single processor as T (1)/(P ⋅ T (P )) ⋅ 100, where T (P ) is the wall-clock time
required for solution on P processors.

In the case of the BDF2 time discretization, compute times have very similar
qualitative properties. Figure 7 shows compute times of a space-parallel algorithm
with sequential time stepping, as well as the STMG and MGRIT variants considered
in Figure 4 applied to SecondOrder2D(T = 4π − π/512) on a space-time grid of size
5132×4096. Here, for STMG and MGRIT, we consider adding temporal parallelism to
two different levels of spatial parallelism, i.e., we look at using 64 and 256 processors
for distributing the spatial domain. If we denote the number of processors used for
temporal parallelism in the two multigrid schemes by Pt, when using 64-way paral-
lelism in space, the space-time domain is distributed across 64Pt processors such that
each processor owns a space-time hypercube of approximately 642 × 4096/Pt. Analo-
gously, considering 256-way parallelism in space, the space-time domain is distributed
across 256Pt processors such that each processor owns a space-time hypercube of ap-
proximately 322 × 4096/Pt. The time curves show that the crossover point for which
it becomes beneficial to use MGRIT for this particular problem and the speedup
compared to time stepping at large processor counts depends on the levels of spatial
and temporal parallelism. More precisely, for this particular problem, for MGRIT
to break even with sequential time stepping using a fixed level of spatial parallelism,
we need to add about 16-way parallelism in time. For 64-way parallelism in space,
for example, we need about 1024 processors for MGRIT to break even with sequen-
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tial time stepping. Increasing the number of processors to 8192 results in a speedup
of a factor of seven compared to sequential time stepping with 64-way parallelism.
A similar comparison can be made for 256-way parallelism in space. Note that for
MGRIT with 64-way parallelism in space and 8192 processors in total, the number of
time-step pairs per processors is 16 corresponding to the coarsening factor and, thus,
further increasing the number of processors is not beneficial.
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Fig. 7: Strong parallel scaling: time to solve SecondOrder2D(T = 4π − π/512) on a
5132 × 4,096 space-time grid using sequential time-stepping, STMG, and MGRIT.

The dependency of compute times on the levels of spatial and temporal parallelism
is not as pronounced in the STMG approach as in the MGRIT approach. While
for smaller numbers of processors it is slightly beneficial to use fewer processors for
spatial parallelism, on larger processor counts compute times of both variants are very
similar. Comparing to the space-parallel algorithm with sequential time stepping, the
maximum speedup of STMG is about a factor of 15 larger than that of MGRIT.

Figure 8 details “effective” parallel efficiencies, i.e., parallel efficiencies relative
to sequential time stepping on a single processor, for the time-integration approaches
considered in Figure 7. For both STMG and MGRIT, numbers are about steady out
to large processor counts. Comparing the two multigrid approaches, the difference in
effective parallel efficiencies diminishes when going from the BDF1 to the BDF2 time
discretization. More precisely, while in Figure 6, efficiencies for STMG are between
15 and 40% and for MGRIT about 1%, in Figure 8, efficiencies for STMG are between
11 and 16% and for MGRIT between 1 and 3%.

4.4. Insights from the parallel models. The above results demonstrate that
the two intrusive approaches show somewhat poorer parallel scalability than the
MGRIT algorithm. To better understand the parallel scalability, we use the mod-
els developed in Section 3.4. Based on data in [15, Table 2], we choose the set of
machine parameters given by

(4.1) α = 1 µs, β = 0.74 ns/double, γ = 0.15 ns/flop,

characterizing a modern communication-dominant machine. To define the parameter
set, we have set α = 1 µs and chosen β and γ such that the ratios α/β and α/γ
are equal to the maximum ratios from [15, Table 2]. Figure 9 shows predicted times
to solve FirstOrder2D(T = π2) on a 1282 × 16,384 space-time grid using sequential
time stepping, STMG, WRMG-CR, and MGRIT. The parameters in the models are
chosen as in the strong parallel scaling study in Figure 5. Note that for STMG, models



Multigrid methods with space-time concurrency 23

1 4 16 64 256 1024 4096 16,384
0.1

1

10

100

# processors

e
ff
ic

ie
n
c
y
 [
%

]

 

 

STMG V(2,1) (64 procs in space)
STMG V(2,1) (256 procs in space)
MGRIT V−FCF (64 procs in space)
MGRIT V−FCF (256 procs in space)
time stepping

Fig. 8: Strong scaling efficiencies of sequential time-stepping, STMG, and MGRIT.
For each method, parallel efficiency is measured relative to time stepping on a single
processor as T (1)/(P ⋅ T (P )) ⋅ 100, where T (P ) is the wall-clock time required for
solution on P processors.

for the extreme cases of coarsening only in space and of coarsening only in time are
used. Results show that predicted time curves behave qualitatively very similar to
experimentally measured runtimes depicted in Figure 5.
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Fig. 9: Predicted times to solve FirstOrder2D(T = π2) on a 1282 × 16,384 space-time
grid using sequential time-stepping, STMG, WRMG-CR, and MGRIT.

The models also explain the somewhat poorer parallel scalability of STMG and
WRMG-CR at higher processor counts in this specific parallel scaling study. For
WRMG-CR, cyclic reduction becomes problematic introducing an additional loga-
rithmic factor in the communication cost. More precisely, assuming that the space-
time grid of size N2

x ×Nt is distributed evenly such that each processor’s subdomain
is approximately of size n2

x × nt, the β-term in the WRMG-CR-model of νWRMG

V (ν1, ν2)-cycles is given by

T
(WRMG)
β ≈ νWRMG [8(ν1 + ν2 + (5/2))nxnt + (4/3)((2 log2(Nt) + 1)(ν1 + ν2) + 1)n2

x]β.
If we fix nx as in the strong scaling study of the numerical experiment, the second
term is constant and becomes dominant as nt decreases. Thus, we expect poorer
scalability when

nt <
((2 log2(Nt) + 1)(ν1 + ν2) + 1)

8 (ν1 + ν2 + (5/2)) nx.
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For the problem considered in Figures 5 and 9 and one pre- and one postrelaxation
sweep within WRMG-CR, the β-term causes loss in parallel scalability for nt < 2.19nx,
which is the case for about 4096 processors and higher processor counts. The loss in
parallel scalability for STMG at higher numbers of processors when fixing nx can
be similarly explained by considering the β-term in the STMG model with temporal
semicoarsening.

Having validated the models with experimental data, we now use the models for
estimating the parallel scalability of the four time integration approaches on modern
large-scale machines. In the models, we assume a communication-dominant environ-
ment with machine parameters given in (4.1). We consider a domain refinement of
the problem in Figures 5 and 9, i.e., we consider solving FirstOrder2D(T = π2) on a
space-time grid of size 10242 × 131,072 instead of on a 1282 × 16,384 space-time grid.
Analogously to the numerical experiment, for the space-parallel algorithm with se-
quential time stepping, we assume that the spatial domain is evenly distributed such
that each processor holds approximately a square in space. For the space-parallel
multigrid approaches, we add temporal parallelism to 64-way spatial parallelism, as
64 processors are effectively utilized in the time-stepping approach.

Figure 10 shows expected parallel scaling for solving FirstOrder2D(T = π2) on
a 10242 × 131,072 space-time grid using the four time-integration approaches. The
models indicate a similar scaling behavior on large numbers of processors as seen
in numerical experiments at small scale. We note that the expected good parallel
scalability of the three space-time-concurrent multigrid approaches partially relies on
the assumption of large communication-to-computation ratios on modern large-scale
computers.
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Fig. 10: Predicted times to solve FirstOrder2D(T = π2) on a 10242 × 131,072 space-
time grid using sequential time-stepping, STMG, WRMG-CR, and MGRIT.

4.5. Potential improvements to XBraid. The purpose of this paper is to
compare WRMG, STMG and MGRIT, as implemented in their “pure” forms, i.e., to
compare the three parallel-in-time strategies that (1) only semicoarsen in space, (2)
only semicoarsen in time and (3) coarsen in both space and time. Not surprisingly,
the most efficient solution is to coarsen in both space and time (STMG). The slowest
(at least for many problem sizes) is to coarsen only in time (MGRIT).

To address this, current research in the XBraid project is considering approaches
for incorporating aspects of STMG into XBraid. This will allow XBraid to be more
intrusive, but to also achieve efficiencies closer to those of STMG. The ultimate goal
is to allow the user to choose the level of intrusiveness that his/her application can
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tolerate, and to enjoy the maximum benefit of time parallelism for that application.
In other words, the more intrusive the chosen parallel-in-time implementation, the
better the potential speedup.

One such improvement is faster residual computations. The computation of the
residual from (2.6) requires a matrix inversion for the application of Φδt at every time
point. In other words, the computation of the residual is as expensive (in terms of
FLOPS) as the entire traditional time-stepping approach. The alternative used by
STMG is to form the residual based on the matrix stencil [−I Φ−1

δt ] rather than the
MGRIT stencil [−Φδt I]. Note that here the matrix Φ−1

δt is sparse and relatively
cheap to evaluate, and as such, this alternate residual has the potential to save sig-
nificant compute and messaging time. Taking the largest test case for P = 4096 from
Table 1, for example, the time spent computing residuals in MGRIT is 21 seconds out
of the total time of 172 seconds. This change would largely eliminate this cost.

Another example improvement is to allow for variable storage in XBraid. Allowing
for storage at every time point allows for user-implemented point-wise relaxation,
as in STMG. Current F (CF )-relaxation involves expensive matrix inversions and
therefore, cheap point-wise relaxation could offer similar speedups as those available
from faster residual computations. Lastly, full storage of every time point would allow
for improved initial guesses to the (non)linear solvers called by implicit methods.

5. Conclusion. Current trends in computer architectures leading towards sys-
tems with more, but not faster processors, induce a change in the development of
algorithms for evolutionary problems. Instead of exploiting increasing clock speeds,
faster time-to-solution must come from increasing concurrency, driving the develop-
ment of algorithms with space-time concurrency. Motivated by this development, the
comparison of three multigrid methods with space-time concurrency, STMG, WRMG-
CR, and MGRIT, is considered.

Parallel results show that all three multigrid methods with space-time concurrency
considered in this paper are effective solvers for diffusion problems. In the case where
many more processors are available than can be effectively utilized by sequential time-
stepping, performance of all three multigrid methods with space-time concurrency
is better than that of space-parallel time stepping. The speedup in comparison to
sequential time stepping is larger for the invasive STMG and WRMG-CR approaches
than for the non-invasive MGRIT approach. However, the two intrusive approaches
show somewhat poorer parallel scalability than the MGRIT algorithm.

Balancing MGRIT’s less efficient approach are some key practical advantages.
While the generalization to problems in three space dimensions is straightforward
with the non-intrusive MGRIT approach, the effort for a parallel implementation
of the two intrusive approaches STMG and WRMG-CR is immense. Furthermore,
MGRIT allows for memory savings equal to the coarsening factor (here 16x), which
is another appealing advantage over the two invasive approaches1.

Extending the comparison presented in this paper to include other time-dependent
problems is exceedingly difficult, due to the intrusiveness of STMG and WRMG-CR.
Although benefits in runtime are likely much smaller with the MGRIT approach,
its non-intrusiveness easily allows effective exploitation of substantially more compu-
tational resources than with space-parallel time stepping. More concretely, since

1One possibility to save on memory in the waveform relaxation approach is to subdivide the
time interval into a sequence of “windows” that are treated sequentially [44]. However, there is an
apparent parallel performance tradeoff with this reduction in storage requirement.
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MGRIT uses the same time-integration operator as algorithms based on a time-
stepping approach, problem-specific time-integration operators are handled naturally.
On the other hand, it is not clear how to extend STMG and WRMG-CR to other prob-
lem types in cases where specific time-integration schemes are crucial for convergence
of time stepping.
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